page_gt.plot_image(with_char_boxes=True, figsize=(30,20), color='r', linewidth=2.5)
detected_lines = strategy_gradient(page_gt)
page_empty = page_gt.clone()
page_empty.lines = {i:line for i,line in enumerate(detected_lines)}
page_empty.plot_image(with_lines=True, figsize=(30,20), color='b', linewidth=2)
model = models.line_transcriptors
len(page_empty.lines)
line_id = 0
page_empty.lines[line_id].get_image()
page_gt.lines = {i:page_gt.lines[line_id] for i,line_id in enumerate(sorted(page_gt.lines, key=lambda line_id: page_gt.lines[line_id].get_coord()['y']))}
page_gt.lines[line_id].plot_image(with_char_boxes=True, figsize=(20,20), color='r', linewidth=3)
line_transcripted = model(page_empty.lines[line_id])
line_transcripted.plot_image(with_char_boxes=True, figsize=(20,10), color='b', linewidth=3)
print('ground truth:', page_gt.lines[line_id].get_class_names())
print(' prediction:', line_transcripted.get_class_names())